Патогенез апоптоза включает в себя биохимические и генетические механизмы его регуляции. Биохимические механизмы регуляции апоптоза условно могут быть разделены на группы: расщепление, сшивание белков,
🛘 Расщепление белков цистеиновыми протеазами (каспазы).
□ Сшивание белков трансглютаминазами в единую связанную сеть и обезвоживание клеток за счёт действия особых селективных ферментных транспортных систем, регулирующих обмен ионов калия, натрия, хлора и воды. Не исключено участие в процессах конденсации цитоплазмы белков цитоскелетона, прежде всего β-тубулина, усиление синтеза которого отмечается в клетках при апоптозе.
□ Разрушение ядра кальций/магний-зависимой эндонуклеазой, расщепляющей молекуль ДНК в участках между нуклеосомами, что приводит к формированию однотипных по размерам фрагментов ДНК. Масса этих фрагментов кратна массе одной нуклеосомы, состоящей из 200 пар оснований, а каждый фрагмент содержит от одной до нескольких нуклеосом. Своеобразное расщепление ДНК при апоптозе имеет и свое морфологическое выражение в виде особой структуры хроматина.
□ Повреждение структуры клеточной мембраны, сопровождающееся перемещением фосфатидилсерина с внутренней на наружную поверхность цитолеммы. Изменение биохимической организации цитолеммы при апоптозе имеет решающее значение в распозновании и немедленном фагоцитозе апоптозных телец соседними клетками, что предупреждает попадание различных биологически активных субстанций в окружающую среду и тем самым предотвращает воспалительную и другие патологические реакции.

Большая группа генов и их белковых продуктов регулируют процессы апоптоза в клетках. Условно их можно разделить на группы в соответствии с фазами апоптоза: передающие сигнал от клеточной мембраны в клетку, передающие сигнал внутри клетки (конролирующие и интегрирующие), осуществляющие апоптоз, регулирующие фагоцитоз апоптозных телец.

Интересные статьи:1) Химические соединения		
2) <u>Полное голодание</u>		
3) Реакция на повреждение		
-, - canquina no sportagentio		

Патогенез апоптоза